On the macroeconomic effects of financialization

Presentation for the Grenoble Post-Keynesian & Institutionalist Conference: Instability, Growth & Regulation

Céline Gimet, Thomas Lagoarde-Segot and Luis Reyes-Ortiz

Institut de Recherche pour le Développement

1 luis.reyes.ortiz@gmail.com, Luis.Reyes-Ortiz@kedgebs.com, www.luisreyesortiz.org
1 Introduction
Outline

1. Introduction

2. Financialization. Theoretical model
1. Introduction

2. Financialization. Theoretical model

3. Financialization. Empirical model
1. Introduction

2. Financialization. Theoretical model

3. Financialization. Empirical model
Certain studies have shown that there is a positive association between financial development and economic growth, by assuming that the savings rate is the key variable (for instance Shaw, 1973).
Certain studies have shown that there is a positive association between financial development and economic growth, by assuming that the savings rate is the key variable (for instance Shaw, 1973).

Other studies have emphasized the link between financial development and entrepreneurship.
Certain studies have shown that there is a positive association between financial development and economic growth, by assuming that the savings rate is the key variable (for instance Shaw, 1973).

Other studies have emphasized the link between financial development and entrepreneurship.

In line with Epstein (2005), we define financialization as a "pattern of accumulation in which profit making occurs increasingly through financial channels rather than through trade and commodity production".
Certain studies have shown that there is a positive association between financial development and economic growth, by assuming that the savings rate is the key variable (for instance Shaw, 1973).

Other studies have emphasized the link between financial development and entrepreneurship.

In line with Epstein (2005), we define financialization as a "pattern of accumulation in which profit making occurs increasingly through financial channels rather than through trade and commodity production".

Some empirical works show that the relation between economic growth and finance is a U-shaped curve (Rousseau et Wachtel, 2011).
The growing complexity of the financial landscape makes regulation and the political economy response less efficient, which increases moral hazard and systemic vulnerability (Buttiglione et al, 2014).
The growing complexity of the financial landscape makes regulation and the political economy response less efficient, which increases moral hazard and systemic vulnerability (Buttiglione et al, 2014).

Over the past two decades, the banking sector has abandoned its 'credit culture' in order to adopt a 'universal bank' model.
The growing complexity of the financial landscape makes regulation and the political economy response less efficient, which increases moral hazard and systemic vulnerability (Buttiglione et al, 2014).

Over the past two decades, the banking sector has abandoned its 'credit culture' in order to adopt a 'universal bank' model.

The development of financial innovations has considerably improved the complexity of the intermediation schemes.
The growing complexity of the financial landscape makes regulation and the political economy response less efficient, which increases moral hazard and systemic vulnerability (Buttiglione et al, 2014).

Over the past two decades, the banking sector has abandoned its 'credit culture' in order to adopt a 'universal bank’ model.

The development of financial innovations has considerably improved the complexity of the intermediation schemes.

We have witnessed a strong intensification of mergers and acquisitions in the banking sector, which creates a size problem for a few banks considered "too big to fail".
Outline

1. Introduction

2. Financialization. Theoretical model

3. Financialization. Empirical model
We developed a stock-flow consistent model to study the effects of financialization at a macroeconomic level.
Financialization and theoretical model

Stock-Flow Consistent model (1)

- We developed a stock-flow consistent model to study the effects of financialization at a macroeconomic level.
- This methodology is well suited to account for the interaction between the financial and real sectors.
We developed a stock-flow consistent model to study the effects of financialization at a macroeconomic level.

This methodology is well suited to account for the interaction between the financial and real sectors.

The model contains 41 equations that respect accounting identities in both spheres, via real variables (GDP, investment, profits, wages) and financial variables (credit, equity, interest rate, equity price).
We developed a stock-flow consistent model to study the effects of financialization at a macroeconomic level.

This methodology is well suited to account for the interaction between the financial and real sectors.

The model contains 41 equations that respect accounting identities in both spheres, via real variables (GDP, investment, profits, wages) and financial variables (credit, equity, interest rate, equity price).

We show that an increase in the demand for credit has a positive effect on financial profitability of banks, but at the expense of long term growth and private non-financial investment.
SFC models are an alternative to the dominant DSGE models, in part because they are based on existing macroeconomic aggregates.
SFC models are an alternative to the dominant DSGE models, in part because they are based on existing macroeconomic aggregates.

Some studies use variants of these type of models, for instance:

- Giraud et al (2016) built a model that shows the link between carbon footprint and private debt.
- Caiani et al (2016) and Seppecher (2014) propose models that combine a SFC structure with that proposed by the agent-based literature.
SFC models are an alternative to the dominant DSGE models, in part because they are based on existing macroeconomic aggregates.

Some studies use variants of these type of models, for instance:

SFC models are an alternative to the dominant DSGE models, in part because they are based on existing macroeconomic aggregates.

Some studies use variants of these type of models, for instance:

- Giraud et al (2016) built a model that shows the link between carbon footprint and private debt.
Financialization and theoretical model
Stock-Flow Consistent model (2)

- SFC models are an alternative to the dominant DSGE models, in part because they are based on existing macroeconomic aggregates.
- Some studies use variants of these type of models, for instance:
 - Giraud et al (2016) built a model that shows the link between carbon footprint and private debt.
 - Caiani et al (2016) and Seppecher (2014) propose models that combine a SFC structure with that proposed by the agent-based literature.
Financialization and theoretical model

Stock-flow consistent model: Uses-resources table and matrix of flows

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>F</th>
<th>B</th>
<th>CB</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wages</td>
<td>WB</td>
<td>$-WB$</td>
<td></td>
<td></td>
<td>$=0$</td>
</tr>
<tr>
<td>Profits</td>
<td>$-\Pi$</td>
<td>Π</td>
<td></td>
<td></td>
<td>$=0$</td>
</tr>
<tr>
<td>Interests</td>
<td>$-Int^H$</td>
<td>$-Int^F$</td>
<td>Int</td>
<td>$-Int^G$</td>
<td>$=0$</td>
</tr>
<tr>
<td>Dividends</td>
<td>$-Div$</td>
<td>Div</td>
<td></td>
<td></td>
<td>$=0$</td>
</tr>
<tr>
<td>Taxes</td>
<td>$-T^H$</td>
<td>$-T^F$</td>
<td></td>
<td>T</td>
<td>$=0$</td>
</tr>
<tr>
<td>Consumption</td>
<td>$-Cons^H$</td>
<td>$Cons$</td>
<td></td>
<td>$-Cons^G$</td>
<td>$=0$</td>
</tr>
<tr>
<td>Investment</td>
<td>$-I^H$</td>
<td>$I - I^F$</td>
<td></td>
<td>$-I^G$</td>
<td>$=0$</td>
</tr>
<tr>
<td>Saving</td>
<td>S^H</td>
<td>S^F</td>
<td>$-S + S^B$</td>
<td>0</td>
<td>S^G</td>
</tr>
<tr>
<td>Deposits</td>
<td>$p_D\Delta D^H$</td>
<td>$p_D\Delta D^F$</td>
<td></td>
<td>$-p_D\Delta D$</td>
<td>$=0$</td>
</tr>
<tr>
<td>Credit</td>
<td>$-p_L\Delta L^H$</td>
<td>$-p_L\Delta L^F$</td>
<td>$p_L\Delta L$</td>
<td>$-p_L\Delta L^G$</td>
<td>$=0$</td>
</tr>
<tr>
<td>Equity</td>
<td>$-p_E\Delta E$</td>
<td>$p_E\Delta E$</td>
<td></td>
<td></td>
<td>$=0$</td>
</tr>
<tr>
<td>Refinancing</td>
<td></td>
<td></td>
<td>$-\Delta RF$</td>
<td>ΔRF</td>
<td>$=0$</td>
</tr>
</tbody>
</table>
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method.
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method.

\[\text{Stock}^t = \text{Stock}^{t-1} + \text{Flow}^t + \text{Revaluation}^t \]

By separating prices and volumes for equities issued by non-financial firms, we have:

\[\text{p}^{E} = \text{p}^{E} - \text{p}^{E-1} + \Delta \text{p}^{E} + \text{p}^{E} \]
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have

\[
\text{Stock}_t = \text{Stock}_{t-1} + \text{Flow}_t + \text{Revaluation}_t
\]

By separating prices and volumes for equities issued by non-financial firms, we have:

\[
p_{E_t} = p_{E_{t-1}} + p_{E} \Delta E_t + E_{t-1} \Delta p_{E_t}
\]

\[
p_{E_t} = p_{E_{t-1}} + p_{E_t} - p_{E_{t-1}} + p_{E_t} - p_{E_{t-1}} - p_{E_{t-1}}
\]
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have

\[Stock_t = Stock_{t-1} + Flow_t + Revaluation_t \]
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have

\[Stock_t = Stock_{t-1} + Flow_t + Revaluation_t \]

By separating prices and volumes for equities issued by non-financial firms, we have:
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have

$$Stock_t = Stock_{t-1} + Flow_t + Revaluation_t$$

By separating prices and volumes for equities issued by non-financial firms, we have:
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have

\[Stock_t = Stock_{t-1} + Flow_t + Revaluation_t \]

By separating prices and volumes for equities issued by non-financial firms, we have:

\[p_E E = p_{E-1} E_{-1} + p_E \Delta E + E_{-1} \Delta p_E \]
Another type of equilibrium that our model exhibits for all periods is that which stems from the permanent inventory method. For instance, for the value of a given asset we have:

$$Stock_t = Stock_{t-1} + Flow_t + Revaluation_t$$

By separating prices and volumes for equities issued by non-financial firms, we have:

$$p_E E = p_{E-1} E_{-1} + p_E \Delta E + E_{-1} \Delta p_E$$

$$p_E E = p_{E-1} E_{-1} + p_E E - p_E E_{-1} + p_E E_{-1} - p_{E-1} E_{-1}$$
The real sector equations relevant for this modeling exercise are the following:
The real sector equations relevant for this modeling exercise are the following:

\[I = \phi K (I_{\text{lag}}, q - 1, \Pi - 1, r - 1, Y - 1) \]

\[\text{Int} = r p L - 1 L - 1 \]

\[\text{Div} = r E p E - 1 E - 1 \]

- \(I \) is total investment,
- \(q \) is the ratio of the value of equities with respect to non-financial assets,
- \(Y \) is GDP and \(\Pi \) are profits.
The real sector equations relevant for this modeling exercise are the following:

\[I = \phi_K(I_{lag}, q^{-1}, \Pi^{-1}, r^{-1}, Y^{-1}) \]
The real sector equations relevant for this modeling exercise are the following:

\[I = \phi_K(I_{\text{lag}}, q_{-1}, \Pi_{-1}, r_{-1}, Y_{-1}) \]

\[\text{Int} = r p_{L-1} L_{-1} \]
The real sector equations relevant for this modeling exercise are the following:

\[I = \phi_K(I_{\text{lag}}, q_{-1}, \Pi_{-1}, r_{-1}, Y_{-1}) \]

\[\text{Int} = r_{pl} L_{-1} L_{-1} \]

\[\text{Div} = r_{pE} p_{E-1} E_{-1} \]
The real sector equations relevant for this modeling exercise are the following:

\[I = \phi_K(I_{lag}, q_{-1}, \Pi_{-1}, r_{-1}, Y_{-1}) \]

\[\text{Int} = r_{pL_{-1}}L_{-1} \]

\[\text{Div} = r_{EP_{E-1}}E_{-1} \]

- \(I \) is total investment,
- \(q \) is the ratio of the value of equities with respect to non-financial assets,
- \(Y \) is GDP and \(\Pi \) are profits.
The equations of the financial sector relevant for the exercise are:
The equations of the financial sector relevant for the exercise are:

\[
\frac{LR_F}{LR_F^{lag}, r, E^{lag}, \Delta Y^{t-1}} = \phi \frac{E}{E^{lag}, \Delta E^{lag}, \Delta Y^{t-1}}
\]

\[
\frac{r_E}{r_E^{lag}, \Delta \Pi^{lag}, \Delta p^{lag}} = \phi \frac{r_E}{r_E^{lag}, \Delta \Pi^{lag}, \Delta p^{lag}}
\]

Equation \(LR_F\) (leverage ratio of firms in stock form) contains a constant term \(\gamma_F\), on which we apply the shock. \(r\) is the lending interest rate, \(E\) is the volume of equities demanded and \(K\) is the volume of non-financial assets. \(r_E\) is the rate of financial profitability and \(p_E\) is the price of equities.
The equations of the financial sector relevant for the exercise are:

\[
LR^F = \phi_L \left[LR^F_{lag}, r, \frac{E}{K} \right]
\]
The equations of the financial sector relevant for the exercise are:

\[
LR^F = \phi_L \left[LR^F_{\text{lag}}, r, \frac{E}{K} \right]
\]

\[
\Delta p_E = \phi_{pE} \left[\Delta p_{\text{lag}}, \Delta E_{\text{lag}}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right) \right]
\]
The equations of the financial sector relevant for the exercise are:

\[LR^F = \phi_L [LR^F_{lag}, r, \frac{E}{K}] \]

\[\Delta p_E = \phi_{pE} [\Delta p_{lag}, \Delta E_{lag}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right)] \]

\[r_E = \phi_{rE} (r_{Elag}, \Delta \Pi_{lag}, \Delta p_{Elag}) \]
The equations of the financial sector relevant for the exercise are:

\[LR^F = \phi_L \left[LR^F_{\text{lag}}, r, \frac{E}{K} \right] \]

\[\Delta p_E = \phi_{pE} \left[\Delta p_{\text{lag}}, \Delta E_{\text{lag}}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right) \right] \]

\[r_E = \phi_{rE} (r_{\text{Elag}}, \Delta \Pi_{\text{lag}}, \Delta p_{\text{Elag}}) \]

Equation \(LR^F \) (leverage ratio of firms in stock form) contains a constant term \(\gamma_0^F \), on which we apply the shock.
The equations of the financial sector relevant for the exercise are:

\[LR^F = \phi_L \left[LR_{lag}^F, r, \frac{E}{K} \right] \]

\[\Delta p_E = \phi_{pE} \left[\Delta p_{lag}, \Delta E_{lag}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right) \right] \]

\[r_E = \phi_{rE} \left(r_{Elag}, \Delta \Pi_{lag}, \Delta p_{Elag} \right) \]

- Equation \(LR^F \) (leverage ratio of firms in stock form) contains a constant term \(\gamma_0^F \), on which we apply the shock.
- \(r \) is the lending interest rate, \(E \) is the volume of equities demanded and \(K \) is the volume of non-financial assets.
The equations of the financial sector relevant for the exercise are:

\[
LR^F = \phi_L \left[LR_{lag}^F, r, \frac{E}{K} \right]
\]

\[
\Delta p_E = \phi_{pE} \left[\Delta p_{lag}, \Delta E_{lag}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right) \right]
\]

\[
r_E = \phi_{rE} (r_{Elag}, \Delta \Pi_{lag}, \Delta p_{Elag})
\]

Equation \(LR^F \) (leverage ratio of firms in stock form) contains a constant term \(\gamma_0^F \), on which we apply the shock.

\(r \) is the lending interest rate, \(E \) is the volume of equities demanded and \(K \) is the volume of non-financial assets.
Financialization and theoretical model

Stock-flow consistent model: some financial sector equations

- The equations of the financial sector relevant for the exercise are:

\[LR^F = \phi_L \left[LR_{lag}^F, r, \frac{E}{K} \right] \]

\[\Delta p_E = \phi_{pE} \left[\Delta p_{lag}, \Delta E_{lag}, \Delta Y_{-1}, \Delta \left(\frac{E}{K} \right) \right] \]

\[r_E = \phi_{rE} \left(r_{Elag}, \Delta \Pi_{lag}, \Delta p_{Elag} \right) \]

- Equation \(LR^F \) (leverage ratio of firms in stock form) contains a constant term \(\gamma_0^F \), on which we apply the shock.

- \(r \) is the lending interest rate, \(E \) is the volume of equities demanded and \(K \) is the volume of non-financial assets. \(r_E \) is the rate of financial profitability and \(p_E \) is the price of equities.
Financialization and theoretical model

Stock-flow consistent model: a simplified diagram

Private banks → Financial profitability → Private non-fin. sector → Real sector

Private non-fin. sector

A1

B1

B2

B2

A1

D

C

Financial profitability
Financialization and theoretical model
Stock-flow consistent model: baseline results
Financialization and theoretical model

Stock-flow consistent model: after shock results (1)

Gimet, Lagoarde, Reyes (IRD)

Macroeconomic effects of financialization
Outline

1. Introduction

2. Financialization. Theoretical model

3. Financialization. Empirical model
We estimated a balanced panel model for 29 high-income countries for the period 1998-2014.
Financialization. Empirical model

Method

- We estimated a balanced panel model for 29 high-income countries for the period 1998-2014.
- In doing so, we calculated a financialization index as follows:

\[
FINANCIALIZATION_{i,t} = \left(\frac{1 + ROA_{i,t}}{1 + LIQ_{i,t}} \right) (1 + CONC_{i,t})
\]

- ROA is the average annual yield of the banking sector,
- LIQ is a liquidity ratio and
- CONC is a measure of concentration in the banking sector.

We integrate this index in a Bayesian structural panel VAR.
Financialization. Empirical model

Method

- We estimated a balanced panel model for 29 high-income countries for the period 1998-2014.
- In doing so, we calculated a financialization index as follows:

\[
FINANCIALIZATION_{i,t} = \left(\frac{1 + ROA_{i,t}}{1 + LIQ_{i,t}} \right) (1 + CONC_{i,t})
\]

- \(ROA\) is the average annual yield of the banking sector, \(LIQ\) is a liquidity ratio and \(CONC\) is a measure of concentration in the banking sector.
Financialization. Empirical model

Method

- We estimated a balanced panel model for 29 high-income countries for the period 1998-2014.
- In doing so, we calculated a financialization index as follows:

\[
FINANCIALIZATION_{i,t} = \left(\frac{1 + ROA_{i,t}}{1 + LIQ_{i,t}} \right) (1 + CONC_{i,t})
\]

- \(ROA\) is the average annual yield of the banking sector, \(LIQ\) is a liquidity ratio and \(CONC\) is a measure of concentration in the banking sector.
- We integrate this index in a Bayesian structural panel VAR.
One of our variables of interest is credit demand by the private sector.
One of our variables of interest is credit demand by the private sector. The other variables included in the system of simultaneous equations are the index of financialization, the wage share, GDP and private investment.
One of our variables of interest is credit demand by the private sector. The other variables included in the system of simultaneous equations are the index of financialization, the wage share, GDP and private investment. Our results confirm that GDP is negatively associated to excessive credit demand and to the financialization index, and positively to wages and profits.
Thank you for your attention

Epstein (2005), *Financialization and the world economy*.

Gimet, Lagoarde, Reyes (IRD)

Epstein (2005), *Financialization and the world economy*.

Mazier and Tiou-Tagba (2012), *World imbalances and macroeconomic imbalances: A three country stock-flow consistent model with fixed or flexible prices*. Metroeconomica.

Zezza and Valdecantos (2015), *Reforming the international monetary system: a stock-flow consistent approach*. JPKE.

Mazier and Valdecantos (2015), *Multi-speed Europe: is it viable? a stock-flow consistent approach*. EJEEP.

Giraud et al (2016), *Coping with the collapse: A stock-flow consistent monetary macrodynamics of global warming*. AFD.

Epstein (2005), *Financialization and the world economy*.

Epstein (2005), *Financialization and the world economy*.

Mazier and Tiou-Tagba (2012), *World imbalances and macroeconomic imbalances: A three country stock-flow consistent model with fixed or flexible prices*. Metroeconomica.
References

- Epstein (2005), *Financialization and the world economy*.

Gimet, Lagoarde, Reyes (IRD)
Macroeconomic effects of financialization
08/12/2017 21 / 21
References

- Epstein (2005), *Financialization and the world economy*.
References

- Epstein (2005), *Financialization and the world economy*.
- Mazier and Valdecantos (2015), *Multi-speed Europe: is it viable? a stock-flow consistent approach*. EJEEP.

Epstein (2005), *Financialization and the world economy*.

Mazier and Tiou-Tagba (2012), *World imbalances and macroeconomic imbalances: A three country stock-flow consistent model with fixed or flexible prices*. Metroeconomica.

Zezza and Valdecantos (2015), *Reforming the international monetary system: a stock-flow consistent approach*. JPKE.

Giraud et al (2016), *Coping with the collapse: A stock-flow consistent monetary macrodynamics of global warming*. AFD.
References

- Epstein (2005), *Financialization and the world economy*.
- Mazier and Valdecantos (2015), *Multi-speed Europe: is it viable? a stock-flow consistent approach*. EJEEP.
- Giraud et al (2016), *Coping with the collapse: A stock-flow consistent monetary macrodynamics of global warming*. AFD.
References

- Epstein (2005), Financialization and the world economy.
- Mazier and Tiou-Tagba (2012), World imbalances and macroeconomic imbalances: A three country stock-flow consistent model with fixed or flexible prices. Metroeconomica.
- Zezza and Valdecantos (2015), Reforming the international monetary system: a stock-flow consistent approach. JPKE.
- Mazier and Valdecantos (2015), Multi-speed Europe: is it viable? a stock-flow consistent approach. EJEEP.
- Giraud et al (2016), Coping with the collapse: A stock-flow consistent monetary macrodynamics of global warming. AFD.